Inégalités sur la droite numérique

Dans cette activité. les élèves explorent les inéquations linéaires et font des liens entre les différentes représentations (incluant les expressions algébriques, en mots, sur la droite numérique et l’ensemble-solution).

ACTIVITÉS RELIÉES

Cette activité fait partie d’une série de trois. Voici les liens des deux autres :

2. Inégalités #2 sur la droite numérique
https://teacher.desmos.com/activitybuilder/custom/58fb73e4cd80a609828f2b58

3. Valeur absolue et inéquations sur la droite numérique
https://teacher.desmos.com/activitybuilder/custom/58fe3be16f4a650f3b43eee8

Cette activité était inspirée de Stefan Fritz.

Le prix des boîtes LEGO

Dans cette activité, les élèves font glisser les curseurs afin d’explorer la relation entre le coût et le nombre de pièces différentes boites de LEGO « La Guerre des Étoiles ». Les élèves seront amenés à faire des prédictions basées sur ce modèle. Ils interpréteront aussi les paramètres de leur équation dans divers contextes.

Card Sort : Les fonctions linéaires

Cette activité amène l’élève à reconnaitre et à utiliser les propriétés d’une fonction linéaire pour créer trois différents groupes. Les élèves peuvent avoir créé des groupes différents basés sur les différentes propriétés. Plus tard, on demande aux élèves de faire l’analyse des différents groupes – pourquoi un autre élève a-t-il groupé les cartes de façon différente?

Place le point sur la droite

Cette activité met l’accent sur la pente d’une droite. Son but est d’enrichir la compréhension de la pente chez l’élève. Plus précisément, l’activité demande à l’élève d’estimer avant de faire des calculs. Ceci aidera l’élève à reconnaître les proportions en plaçant des points sur une droite imaginaire.

Utilisez les idées des élèves afin de définir la pente comme étant un rapport entre le changement de la coordonné en y et le changement de la coordonné en x. À la fin de cette activité, les élèves devraient avoir acquis une variété de façon pour décrire cette relation. Cependant, ils n’auront peut-être pas pensé l’écrire sous forme de fraction avec ∆y au numérateur et ∆x au dénominateur. C’est à ce moment que vous pouvez introduire ce concept.

Partie, Set, Math

Dans cette activité, les élèves vont développer leurs connaissances de la relation exponentielle en lien avec les bonds d’une balle de tennis. À l’intérieur d’une séquence d’apprentissage, ils vont tenter de déterminer si cette situation représente une relation exponentielle ou non. Ils vont aussi apprendre à construire l’équation d’une relation exponentielle.

Polygraph: Droites, 2e partie

Cette activité fait suite au « Polygraph : Les droites ». En créant des discussions (dans le langage informel de l’élève) l’activité permet de développer le vocabulaire mathématique lié aux graphiques de fonctions linéaires chez les élèves.

Cette activité n’est pas un Polygraph mais bien la suite du Polygraph: Droites.

Polygraph: Systèmes d’équations linéaires

Ce Polygraphe a été construit pour faire apparaître des discussions mathématiques riches sur les systèmes d’équations linéaires. Les mots de vocabulaire importants qui pourraient apparaître dans les questions des élèves: parallèle, intersection, solution, quadrant, axes, vertical, horizontal, incliné, croissante et décroissante.

Dans les premières rondes d’une partie, les élèves pourraient identifier des éléments de la liste ci-dessus même s’ils n’utilisent pas ces mots pour les décrire. C’est à ce moment que vous pouvez intervenir. Lorsque les élèves ont joué 2-3 parties, vous pouvez prendre une courte pause pour discuter de stratégies, de questions signifiantes, et d’encourager les élèves à utiliser un langage mathématique précis et adéquat. Demandez-leur ensuite de jouer plusieurs autres parties en utilisant ce langage mathématique.

Histoires graphiques (Graphing Stories)

Cette activité aidera les élèves à faire la transition entre les représentations à une variable (exemple: droites numériques) à des représentations à DEUX variables dans le plan cartésien. Les élèves regarderont des vidéos de 15 secondes et de les traduire sous forme de graphique avec votre aide.

Un merci spécial à Adam Poetzel (@adampoetzel) pour ses vidéos. (Sous licence CC-BY)

L’atelier de réparation d’Annie et Manon

Cette activité est un classique. Les élèves comparent la croissance linéaire et exponentielle dans un contexte de paiements quotidiens. Dans l’une des options, l’augmentation est de 100$ par jour, alors que dans l’autre l’augmentation correspond au double du paiement de la journée précédente.

Cette activité est particulièrement utile pour les élèves qui ont étudié la fonction linéaire, mais qui n’ont pas encore abordé le concept de croissance exponentielle. Dans cette optique, cette activité peut-être un excellent point de départ pour l’étude de la fonction exponentielle.